May. 17. 2021

[Overview]

Kobe/Kansai Hydrogen Utilization Council The Study Report (2020)

-Organize a Future Vision for a Hydrogen Society and Quantifying Supply and Demand-

Special Notes

- Information handled within this document is the estimated value of the 2020 fiscal year of this Council
 - ✓ Estimated value was calculated by setting various preconditions based on published literature, and is not a committed value.
- Information handled within this document may change in future detailed studies.
- The Council will continue to collaborate with related parties and aim to realize and optimize the contents of the study.

Future Vision and Working Group

Potential Demand Volume

The total potential demand of each working group will reach 330,000 tonnes by 2031.

Potential Supply Cost

Comprehensive Study from Production to Supply.

	Production		Transportation			Storage/Supply		Supply Cost		
Overseas	Australian Coal LH ₂ * ¹		Primary						33.3~34.3 JPY/Nm3	For power station
		42.3 JPY/Nm3		2.5~3.5	Coasting Vessel	5.4~13.0 JPY/Nm3	Secondary Receiving Terminal	2.2~3.2 JPY/Nm3	40.9~50.5 JPY/Nm3	For demand around secondary terminal (dose not include tertiary transport)
			JPY/Nm3	Pipeline	0.2~3.3JPY/Nm3			33.5~37.6 JPY/Nm3	For oil refinery/che mical plant	
					LH ₂ Lorry	2.6~4.6 JPY/Nm3			37.0~40.2 JPY/Nm3	For H2 CGS·
Domestic	LH ₂ * ²	90~145JPY/ Cost Reduction 60~85JPY/No	on				Customer Receiving Facility	1.1~1.3 JPY/Nm3	61.1~86.3 JPY/Nm3	port (cargo handling equipment, hinterland transport) mobility stationary
	Compress ed H ₂ * ²	90~145JPY/N Cost Reduction 80~115JPY/N	on						81.1~116.3 JPY/Nm3	
	Renewabl e H ₂	120JPY/Nm3 Future Outloo 50JPY/Nm3		Mainly via Pipeline					50∼ JPY/Nm3	FC

*Each cost listed above estimated under different research methods (literature, market soundings, etc.), distances and conditions.

^{*1:} Production cost (CIF) of Australian Coal LH₂ includes the cost of liquefaction, loading, and marine transportation.

^{*2:} Estimate premise of the costs assumes a stable supply of a fixed quantity.

Quantification of Supply Chain: Economic Gap around 2030

- ✓ There will be a gap (approx. 73 billion JPY/a) between calorie equivalent cost of conventional fuel and the estimated hydrogen supply cost in the initial phase of commercialization of Kobe/Kansai regional H₂ supply chain around 2030.**
 - Calorie equivalent cost does not include R&D and demonstration cost for H₂ related infrastructure leading up to commercialization, and newly required H₂ related equipment cost.
- ✓ Kobe/Kansai regional H₂ supply chain to become independent and to fill the economic gap, it is required for supply side to make effort on reducing H₂ supply cost, and for demand side, to create new customers, and to evaluate and certify social impacts and values of energy transition of customers.
- ✓ Based on the council's estimated hydrogen demand, approx. 2.4 million ton-CO2/a emissions can be reduced.

*Estimated based on the hydrogen demand in 2031, current assumption of calorie equivalent cost, and the supply cost around 2030. Note a cost of some H₂ supply infrastructure such as H₂ station is not included in the supply cost around 2030.